Generalized asymptotic Sidon basis
نویسندگان
چکیده
Let h,k?2 be integers. We say a set A of positive integers is an asymptotic basis order k if every large enough integer can represented as the sum terms from A. called Bh[g] h in at most g different ways. In this paper we prove existence Bh[1] sets which are bases 2h+1 by using probabilistic methods.
منابع مشابه
Generalized Sidon sets
We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B
متن کاملConstructions of generalized Sidon sets
We give explicit constructions of sets S with the property that for each integer k, there are at most g solutions to k = s1 + s2, si ∈ S; such sets are called Sidon sets if g = 2 and generalized Sidon sets (or B2[ ⌈ g/2 ⌉ ] sets) if g ≥ 3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further optimize Koulantzakis’ idea of interleaving sever...
متن کاملOn Sidon sets and asymptotic bases
Erdős conjectured the existence of an infinite Sidon sequence of positive integers which is an asymptotic basis of order 3. We progress towards this conjecture in several directions. We prove the conjecture for all cyclic groups ZN with N large enough. We also show that there is an infinite B2[2] sequence which is an asymptotic basis of order 3. Finally, we prove that for any ε > 0 there is a S...
متن کاملBounds for generalized Sidon sets
Let Γ be an abelian group and g ≥ h ≥ 2 be integers. A set A ⊂ Γ is a Ch[g]-set if given any set X ⊂ Γ with |X | = h, and any set {k1, . . . , kg } ⊂ Γ , at least one of the translates X + ki is not contained in A. For any g ≥ h ≥ 2, we prove that if A ⊂ {1, 2, . . . , n} is a Ch[g]-set in Z, then |A| ≤ (g − 1)1/hn1−1/h + O(n1/2−1/2h). We show that for any integer n ≥ 1, there is a C3[3]-set A ...
متن کاملGeneralized concept of $J$-basis
A generalization of Schauder basis associated with the concept of generalized analytic functions is introduced. Corresponding concepts of density, completeness, biorthogonality and basicity are defined. Also, corresponding concept of the space of coefficients is introduced. Under certain conditions for the corresponding operators, some properties of the space of coefficients and basicity crite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2020.112208